B.Sc. DEGREE EXAMINATION - MATHEMATICS
 SIXTH SEMESTER - APRIL 2013
 MT 6603/MT 6600-COMPLEX ANALYSIS

Date: 25/04/2013
Dept. No. \square Max. : 100 Marks
Time : 1:00-4:00

PART - A

Answer ALL questions:

1. Show that the function $f(z)=\bar{z}$ is nowhere differentiable.
2. Show that $u=3 x^{2} y+2 x^{2}-y^{3}-2 y^{2}$ is harmonic.
3. State Cauchy-Goursat's theorem.
4. State Morera's theorem
5. Write the Taylor's series expansion of $f(z)=\operatorname{cosz}$.
6. Define removable and essential singularities.
7. Define residue of a function at a point.
8. State Rouche's theorem.
9. Define conformal mapping.
10. Define a bilinear transformation.

PART - B

Answer any FIVE questions:

11. Show that the function $f(z)=\sqrt{|x y|}$ is not regular at the origin , although

Cauchy-Riemann equations are satisfied at the origin.
12. Find the regular function whose imaginary part is $e^{-x}(x \cos y+y \sin y)$
13. Find the radius of convergence of the power series $f(z)=\sum_{0}^{\infty} \frac{z^{n}}{2^{n}+1}$.
14. State and prove Liouville's theorem.
15. Expand $f(z)=\frac{z}{(z-1)(z-3)}$ as laurent's series valid in the following regions(i) $1<|z|<3$ (ii) $0<|z-1|<2$.
16. Classify the singularity of the function $f(z)=\frac{z-2}{z^{2}} \sin \left(\frac{1}{z-1}\right)$.
17. Apply cauchy residue theorem to show that $\int_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z=4 \pi \mathrm{i}$
where C is the positively oriented circle $|z|=3$,
18. Find the bilinear transformation which maps the points $z=-2,0,2$ into the points $\mathrm{w}=0, \mathrm{i},-\mathrm{i}$ respectively.

PART - C

Answer any TWO questions:

19. a) State and prove the sufficient conditions for $f(z)$ to be differentiable at a point.
b) If $\mathrm{f}(\mathrm{z})$ is an analytic function show that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
20. State and prove Cauchy's integral formula and use it to evaluate $\int_{C} \frac{\cos \pi z}{z^{2}-1} d z$ around a rectangle with vertices $2 \pm i,-2 \pm i$.
21. a) State and prove Laurent's theorem.
b) Using contour integration along the unit circle, evaluate $\int_{0}^{2 \pi} \frac{d \theta}{13+5 \sin \theta}$.
22. a) Prove that any bilinear transformation which maps the unit circle $|z|=1$ onto the unit circle $|w|=1$ can be written in the form $w=e^{i \lambda}\left(\frac{z-\alpha}{\bar{\alpha} z-1}\right)$ where λ is real number.
b) State and prove Cauchy's residue theorem.
